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The Space Shuttle Main Engine
a mixwre of liquid oxygen and

ak% Rockwell International

Racketdyne Division

SPACE SHUTTLE MAIN ENGINE

(SSME) was developed expressly for use on America’s Space Shuttde. Using
liquid hydrogen. the SSME can atain a maximum thrust level (in vacuum) of

5i2.300 pounds at 109% power level. The regeneratively cocled engine also features high performance

wrbopumps for propeliant and o
Ultra-high-pressure operation of
a high-area-ratio exhaust nozzle

xidizer that develop 77.310 horsepower and 29.430 horsepower. respecrively.
the pumps and cembustion chamber allows expansion of all hot gases through
to achieve afficiencies never previously atiained in a production rocket engine.

These advantages ailow a heavier payload to be carried without increasing launch vehicle size.

SPACE SHUTTLE MAIN ENGINE

For more information contact:
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0.5 1 """ 2000

PERFORMANCE (FULL POWER LEVEL)

Maximum Thrust: {109% Power Levei)

At Sea Level. 408.750 pounds

In Vacuum ... 512.300 pounds

Throttle Range .. 63%~109%
Pressures:

Hydrogen Pump Discharge.. 7.040 psia

Oxygen Pump Discharge... 8.070 psia

Chamber Pressure............. . 3.260 psia

Specific Impulse (In Vacuum).. 4535 seconds

Power: 5.07 GW  (Eamenr, in vacuum)
High Pressure Pumps

Hydrogen 77.310 horsepower

Oxygen . 29.430 horsepower
APEA RATO 11evissuesesssraitessmrreresanssrsaasssossnasumssisierrensinaanne 77.5:1
Weight: ...... 6.990 pounds
Mixture Ratio (OFF) ciorirmiiiiereinssiens s 6.0:1
Dimensions: .....ccccecuieeean . long/96 in. wide
Propellants:

................. Liquid Hydrogen
Liquid Oxygen

ELV Propulsion/Rockwell International/Rocketdyne Division/6633 Canoga Ave./
Canoga Park/CA/91303/(818)700-6027
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Optimum Isp (sce)

480 r

Q 2B8+2C

470 Condensation of HEDM (4 mole %)

460
optimum O,
per 100 moles H,

440 r

430 r

40

410 r

400

200 300 400 500 600 700

HEDM Heat of Formation (kcal/100 moles H,)

Figure 1. Specific impulse of HEDM containing 4 mole percent equivalent atom density in solid hydrogen with
various stages of condensation. Numbers inside circles denote the optimum moles of O, per 100 moles of H, that
produces the maximum Isp for the indicated compositions. The calculations are based on the standard rocket
operating conditions, 1000 psi combustion pressure and 1 atm nozzle exit pressure, which produce 389 sec with
liquid oxygen/liquid hydrogen propellant. The propellant composed of 4 mole percent C-atoms produces maximum
Isp with no oxygen. If the atoms condense to 1 mole percent C4, the Isp drops to the baseline 389 sec value.
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Objective - 5% atoms in cryogenic matrix
Approach

1. FTIR spectroscopy of ByC,.; clusters isolated in 10 K argon matrix

2. Ab-initio calculations of cluster
(a) normal mode frequencies and frequency shifts of their isotopomers
(b) infrared absorption intensities (km mol ™)

3. Measurement of cluster distributions produced upon deposition and after
annealing]. Absolute column densities (molecules cm’?) from Beer’s Law

A exp

<pl>= N

theory

Ap=-] ln[—Et—(ﬁ}dv

Ey(v)

BJCn-J . J=0

c, BC,
¢, C, BC, B, BC B,
Cs BC, B,C; ByC, B,C
¢Cg Cs BCs B,C, B,C; B, BC
C, BCs B,Cs B,C; B,C; BsC, BC
¢C, Cs BC, B,Cs BC; B, BCy BC, B,C By
C, BCg B,C; BiCy B,Cs BsCy BeC; B,Cp BeC
cC;p  Cig BCy ByCs BiC; B,Cg BsCs BeCy B;C; BgC; BeC By
Cyy BCyp ByCs ByCg B4C} BsCs BeCs B;Cy BgCs BoCy .B1oc By
cCr2 Ciz BCy ByCip B3Cy BiCy BsCr Bele ?7(:5 BgCs BoCs ByoCs ByiC  Bip

C,s BCy, ByCys BCrp BiCo BsCs BeCr BiCs BgCs BoCy ByoCy ByyCp BioC o Big

BCSyst2.axg May 13, 1999 2:47:09 PM
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Ratio C(n+ 1)/C(n+3)

Comparison of C,/C, C;/Cgy, C,o/C;, Ratios
Obtained for Different Experimental Conditions
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o More Atoms Fewer Atoms ——

The ratio of the equivalent carbon atom column density for n+1 species

‘(n as in Ca) to the equivalent carbon atom column density for n+3 species

indicates how many atoms were available for formation of species like Ca,
C7, and Cio. When the Ta cell was hotter more n+1 species were formed
during deposition than when the cell was colder. During annealings
there were only minimal changes in the relative order of the ratios for
C4/Cs; C7/Cs; Ci0/Ci2. Similar results are noted for C(n+2)/C(n+3).

The run with 5% Hz2/95% Ar yields a lower C(n+1)/C(n+3) ratio.than
would be expected. The hydrogen may be scavenging atoms.
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Cumulative Sum of Equivalent Carbon Atom Density
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From successive cluster distributions one can calculate the
quantity of carbon species that were not detected in the as-
deposited matrix IR spectrum. This increase in the total
equivalent carbon atom density is attributed to carbon atoms that

“are “invisible” to IR and were thus not accounted for in the original
IR spectrum. |
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15431 '°C, 1512.5 11-12-12-12

(8) BIC =1/3
11g/1%g = 8020
2¢/%3¢ = 991

(b) BIC =173 1530.0 10-12-12-12

119 = 2773 |:
2c/Bc =991 |:

1500.1 11-12-13-12
1497.0 11-12-12-13
//14943 11.13-12-12
| 1616.5 10-12-13-12

D /15150 10-12-12-13
: %1513,3 10-13-12-12

(c) BIC =1/4
115,98 = 80720 |
12¢/3¢ = 80120

(d) BIC =173
1p/'%g = 10/90 |
2¢/3C = 89111/

absorbance

14-13-13-13

12,13, 15136 12¢1¢;
2, : | 1467.9

115115

(e) BIC =125 1:6 130
1g/*0g = 80120 1528.6 2
2¢13¢ = 27773 1627.2 ~

Measured frequencies ?fz A
Predicted frequencies 1502.2 10-13-13-12 % R /A L—1479.9 11-13-12-13
4 15000 10-13-12-13 / 1485.8 1482.5 11-12-13-13
3

1500.0 10-12-13-13 10-13-13-1 14836 11-13-13-12

A4 ik

1 L T T i T B 1

g T T T g T T T T T
1560 1550 1540 1530 1520 1510 1500 1490 1480 1470 1460
wavenumbers

1G. 1. FTIR spectra of the vy( ') mode of isotopomers of linear BC, and the ¥3(0,) mode of isotopomers of linear C,. The spectra were recorded at 10 K
after annealing the matnces with the indicated compositions at 27.5 K for 150 5. The large open triangles at the bottom show the predicted frequencies of
linear BC; isotopomers (as explained in the text) and small filled triangles show measured isotopomer frequencies.

2003.6 matrix (@) 2 11
12c 3¢ ' iC, 4 BC,
0.10 :1997.8 4
- 12~ 13
: C,°C
11987.5
0.08 - :
4
1 3
2
o 0.06 1 1
2 0
o
S, matrix (b) '2Ca, '°BC,
=]
© 0.04 - 4
0.02 1 A 4
A 3
- Hvs 2
10803 ! ! HBCa 1
0.00 20068} 20021 0
2030 2020 2010 2000 1890 1980 1550 1540 1530 1520 1510 1500
wavenumbers

J1G. 2. Spectra obtained from matrix (a) (''8/'°B = 4/1) and mauix (b} {"'B/'®B = 172.7] showing correlation upon annealing of the v («) hands of 1°BC, and
"'BC, a1 2006.8 and 2002.1 em~! with the »;{) bands at 1530.0 and 1512.5 cm™". The spectra labeled **0"" are from the ariginally deposited matrix. Labels
“1** 1o “*4"* indicate spectra recorded after the first through fourth anncaling as follows: (1} 7.5 K for 150 s. (2) 30.0 K for 75 5. (3) 32.5 K for 455, (4) 350
K for 30 s. Frequency and absorbance scales are identical for all spectra. The plotted absorhance is - logp of the transmittance. To facilitate comparisons
between matrices, the absorbance of the matrix (b) spectra are multiplicd by 1.4.
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FIG. 3. FTIR spectra of the »3(v,) mode of isotopomers of linear BCCB. The spectra were recorded after anncaling the matrices with the indicated
compositions at 27.5 K for 150 s. The large open triangles at the botiom show the predicted {requencies of linear BCCB isotopomers (as explained in the tex()

4

and small filled triangles show p q

TABLE IV. Experimental B,C, isotop q
triplet bands of B,C, isotopomers.

y patterns. Freq ies and freq

y intervals (cm ") in

Boron isotope triplets

Carbon isotope triplets

Intervals Intervals
Isotopomer Freq. Short Long Isotopomer Freq. Short Long
18, '1C, 979.0 °g, ‘¢, 979.0
113 8.8
letig, 12¢, 967.7 24.0 g, '23¢, 970.2 (16.7)*
12.7 (197
g, c, 955.0 iog, 1, {962.3)*
log, 123¢, 970.2 ledig, 13, 961.7
(115" (9.05
g, 28c, (958.7)* ) 244 iolig, 12Lc, (958.7) 17.1
(12,9 8.1y
g, 1383c, 945.8 enp, e, 950.6
g, ¥C, (962.3)* B, '%C, 955.0
(1.7 9.2
L A o 950.6 (2489 ', ¢, 945.8 17.5
. 13.1 8.3
1B, B¢, 937.5 g, ¢, 937.5

*Frequencies and intervals in parentheses were interpolated or extrapolated from measured quantities.
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Conclusions

Linear C;, cyclic BC,, and cyclic B;C, constituted about 80% of the total observable boron and
carbon in the initially deposited matrix, but B; was not observed.

The measured trimer distribution in the initially formed matrices was
p(Cs) : p(BCy) : p(B2C) : p(B3) ~ 1:1.5:0.5: < 0.05.

Statistical substitution of J boron atoms into an n-atom carbon cluster produces a distribution given
by p(B,C,.)/ p(C,) =l{n(n-1)...(n-J+1)}/J1] [B/C)’. With the experimental B/C ~ 1/3, the statistical
trimer distribution is ‘

p(C3) : p(BCy) : p(B,C) : p(By) ~1:1:0.33:0.03.

Agreement between distributions implies trimers form by random condensation of well-mixed atoms,
uninfluenced by the relative energies of the trimers, the energies of their precursors, or preferential
kinetics pathways that could otherwise distort the statistics..

Linear C; and cyclic BC,, disappeared entirely when the matrices were repeatedly annealed to
temperatures between 25 K and 35 K, but cyclic B,C was inert.

Linear C, and BC; (BCCC) disappeared more slowly, and linear B,C, (BCCB) grew to ~ 95% of its
final value during the first annealing. B,C; was also inert, as B,C.

The sources of B,C, are from condensation of atom plus trimer (B + BC; but not C + B,C) or dimer +
dimer (BC + BC but not B; + C;). Although BC was not observed, the upper limit of p(BC) is larger
than p(B,C,) so that BC cannot be ruled out as a source of B,C,.

- The growth of B,C, is conclusive evidence of the presence of BC and/or B in the originally deposited
matrix in an amount at least as great as the growth of B,C,. '

Linear Cs, BC, (BCCCC) and B,C; (BCCCB)| and larger linear clusters (ByCp.j, 5<n<11,J=0,1,
2), all grew upon annealing.

The sources of B,C; are dimer + trimer (BC + BC; but not B; + C;) and atom + tetramer (B + BC;
but not C + B,C,). ‘

Since p(BC,) ~ 5p(BC3) in the initially deposited matrix, the BC + BC, source is dominant. Growth
of B,C; conclusively establishes the presence of BC in the matrix in an amount at least as great as the
amount by which B,C; grows.

Growth of BC, occurs primarily by BC + C; rather than B+ Cyor C + BC; because p(C;) ~ 10p(Cy)
and p(C;) ~ 2p(BC;). Growth of Cs occurs by C + C4 and C, + G, which establishes the presence of
C and/or C, in the original matrix in an amount at least as great as Cs growth.

Disappearance of triangular BC, requires breaking of one of its B-C bonds when one of its carbon
atoms is attacked. The major reorganization of electronic energy involved in opening the ring
appears to occur with little (< ~3 kcal mol™”) or no energy barrier, which makes this small molecule a
candidate for an interesting ab-initio study of unusual reactivity at low temperature.
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Conclusions
1. Csis linear but BC,, B,C and Bj are cyclic.
2. n>3;J=0,1,2 clusters are linear. Boron atoms cap the ends of linear chains.
3. J=0, 1,2 substitution in n > 5 clusters does not significantly affect IR intensities.

4. Forn >5 the absorption intensity of even n clusters is two to three times smaller than that
of odd n clusters.

5. B,C, grew most dramatically upon annealing. BC was not detected. Its upper limit column
density is comparable to that of n = 4 clusters. B,C, sources may be 2BC or B +BC; butC+
B,C does not form B,C,.

6. n=3,4;J =0, 1 clusters disappear upon annealing but J = 2 clusters either grow or remain
unchanged. Capping the ends of clusters with boron seems to render them inert to further
condensation.

7. Statistical cluster distributions are apparent in n = 4 and 5 clusters. B,C yields are too high
and B,C,., yields are too low in larger n 2 6 clusters.

8. n > 5 clusters grow upon annealing and larger clusters grow more than smaliler clusters.

Conclusions from Carbon HEDM Research

Quantitative analysis - Establishes HEDM density, distribution of carbon clusters, heat of formation of
HEDM. Enables tracking of growth and decay of carbon clusters - carbon bookkeeping - quantification of
"invisible carbon", C-atom and C,.

Highest density matrix (equivalent C-atom density ~ 1 mole percent in argon) contained 40% "invisible"
carbon (C, C;), determined by tracking the growth of the "visible" (measurable) carbon to a constant
composition after repeated annealing. Main product of condensation is cyclic Cq.

Yields of cyclic-C; are a factor of two larger than the combined yield of all other clusters in the fully
condensed, highest density matrices. Cyclic-Cq; is the dominant condensation product.

Knudsen oven produces ~ 80% C; and ~ 10% each of C; and C-atom (by mass).

Laval oven with AT ~ 600 K (between graphite surface and orifice) produces ~ 5% C; and C; and ~ 90% C-
atom. C-atoms production by our oven (relative to Cs) is enhanced by higher temperature, which is
accompanied by higher AT. '

Substrate must be shielded from oven to prevent condensation during deposition.
Higher temperature oven places higher heat load on substrate, which promotes condensation.

Obtained higher density matrices by decreasing argon flux and maintaining oven flux. However,
condensation was also increased.

One experiment with argon/5% H, caused nearly complete loss of Cy..y and Cg.; relative to Cyus, suggesting
that H, scavenges C-atoms efficiently during co-deposition.



